RemoDAQ-8360 Module User's Manual

Beijing Gemotech Intelligent Technology Co., Ltd

Contents

Contents	2
Chapter 1 Introduction	3
1.2 Pin Assignment	4
1.3 Specifications	4
1.3.1 Main features	4
1.3.2 Digital input	4
1.3.3 Relay output	5
1.4 application wiring	6
1.5 I/O Module Configuration	7
1.5.1 Power-on initialization	
1.5.2 DI Mode	7
1.5.3 DO Mode	8
Chapter 2 Command Data Formats	9
2.1 Command Structure	9
2.2 Modbus Function Code Introductions	10
2.3 RemoDAQ-8360 MODBUS RTU Address Mapping Table	15
Chapter 3 Software Instructions	19

Chapter 1 Introduction

RemoDAQ-8300 series Ethernet-based data acquisition and control modules provide I/O, data acquisitions, and networking in one module to build a cost effective, distributed monitoring and control solution for a wide variety of applications. Through standard Ethernet networking, RemoDAQ-8300 retrieves I/O values from sensors, and can publish them as a real-time I/O values to networking nodes via LAN, Intranet, or Internet. With Ethernet-enabled technology, RemoDAQ-8300 series modules build up a cost-effective DA&C system for Building Automation, Environmental Monitoring, Facility Management and Manufacturing applications.

RemoDAQ-8360 is a high-density I/O module with a 10/100 base-T interface for seamless Ethernet connectivity. Bonding with an Ethernet port and webpage, RemoDAQ-8360 offers 6 relay (form A) output and 6 digital input channels. DI channels support input latch for signal handling, and can be used as 3 KHz counter and frequency input channels. Opposite to the intelligent DI functions, the DO channels also support pulse output.

1.2 Pin Assignment

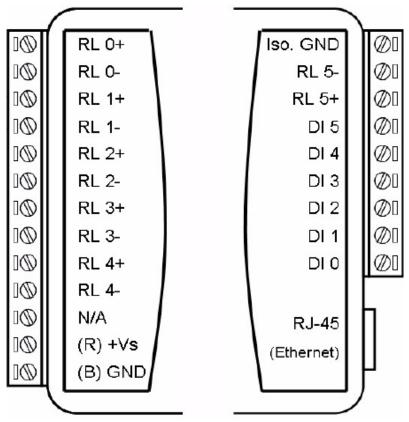


Figure 1.1

1.3 Specifications

1.3.1 Main features

- support 10/100M Ethernet
- support Modbus/TCP
- input voltage: +10V~+30VDC
- power dissipation: 1.5W
- temperature: -20°C~70°C
- humidity: 5%~90%, no condensing
- isolation: 3000VDC
- watchdog

1.3.2 Digital input

channels: 6

- dry contact:
 - Logic level 0: Close to Ground
 - Logic level 1: Open
- Wet Contact:
 - Logic level 0: 0 ~ 3 VDC
 - Logic level 1: 10 ~ 30 VDC
- Supports 3 kHz counter input (32-bit + 1-bit overflow)
- Supports 3 kHz frequency input
- Supports input status latch

1.3.3 Relay output

- Channels: 6 (Form A)
- Contact power:
 - AC: 0.6A@125VAC
 - DC: 2A@30VDC
- Surge voltage: 1500V
- pick-up time: 3msrelease time: 2ms
- min fault free time: 5*10^5 ops
- support 3 kHz pulse output

1.4 application wiring

Digital input wiring instruction

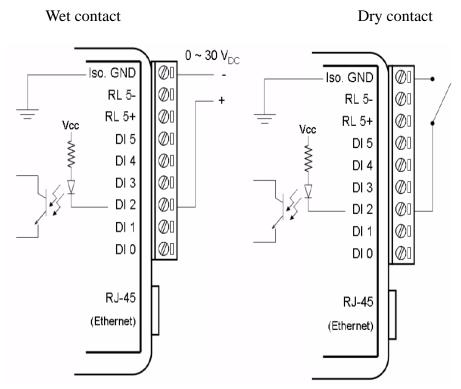


Figure 1.2

Digital output wiring instruction

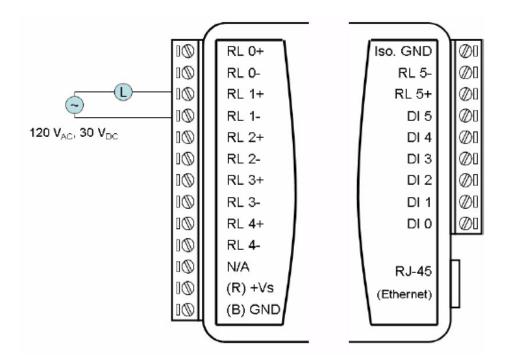


Figure 1.3

1.5 I/O Module Configuration

1.5.1 Power-on initialization

After being power-on, the module will read out the data EEPROM, configuration-related registers, such as: pulse output width, absolute pulse, incremental pulse, module's name, module's version register, DI mode and DO Mode. Each of these registers is configured correctly by the user, then the module will write this configuration information once for the corresponding EEPROM address.

1.5.2 DI Mode

1. DI (default)

When a DI channel Mode Register is set as 00 (see 2.3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in Normal DI Mode. In this mode, the channel is only collected the current state of the DI

2. Counter

When a DI channel Mode Register is set as 01 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in Counter Mode. In this mode, when "Counter Start (1)/Stop (0)" bit is 1, the counter will start counting, counts need to read the corresponding register. Users can set the "Clear Counters (1)" bit to 1, clear the current count.

3. Low to High Latch

When a DI channel mode register is set as 02 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in the Low - High Latch Mode. In this model, once the digital input channel detects logic level changes from low to high, the "DI Latch State" bit will remain the logic high. "DI Latch State" bit value will remain unchanged until the users read this one before they are automatically cleared

4. High to Low Latch

When a DI channel mode register is set as 03 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in the High - Low Latch Mode. In this model, once the digital input channel detects logic level

changes from high to low, the "DI Latch State" bit will remain the logic high. "DI Latch State" bit value will remain unchanged until the user reads this one before they are automatically cleared

5. Frequency

When a DI channel mode register is set as 04 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in the Frequency mode. When you choose Frequency mode, RemoDAQ-8360 digital module will calculate the frequency value of the digital input signal from the selected channel. The frequency value (per second refresh) will be stored in the corresponding channel's Frequency Value Register

1.5.3 DO Mode

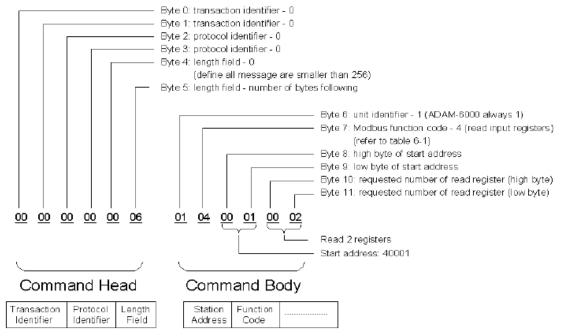
1. DO (default)

When a DO channel mode register is set as 00 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in DO mode. In this mode, the operation of that channel will be the corresponding digital output.

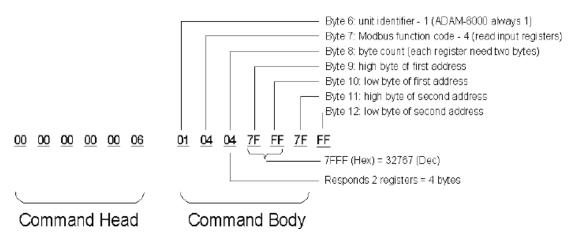
2. Pulse Output

When a DO channel mode register is set as 01 (see 2. 3 RemoDAQ-8360 MODBUS RTU address of the image table), the channel is in Pulse Output mode, users could set up "Pulse output width of low level" Pulse output width of high level" "Pulse output quantity" and" additional Pulse output quantity. After these parameters have been configured, users could define the corresponding output of DO channels as 1, then a corresponding pulse will generate. When users want to stop the current pulse output, just need to set the corresponding DO bit as 0 or set the DO mode register as 0.

Chapter 2 Command Data Formats


RemoDAQ-8300 systems accept a command/response form with the host computer. When systems are not transmitting they are in listen mode. The host issues a command to a system with a specified address and waits a certain amount of time for the system to respond. If no response arrives, a time-out aborts the sequence and returns control to the host. This chapter explains the structure of the commands with Modbus/TCP protocol.

2.1 Command Structure


It is important to understand the encapsulation of a Modbus request or response carried on the Modbus/TCP network. A complete command is consisted of command head and command body. The command head is prefixed by six bytes and responded to pack Modbus format; the command body defines target device and requested action. Following example will help you to realize this structure quickly.

Example:

If you want to read the first two values of RemoDAQ-8360 (address:40001~40002), the request command should be:

Figure 2.1 Request Comment Structure

Figure 2.2 Response Comment Structure

2.2 Modbus Function Code Introductions

To full-fill the programming requirement, there is a series of function code standard for user's reference...

Function Code 01

The function code 01 is used to read the discrete output's ON/OFF status of RemoDAQ-8300 modules in a binary data format.

Request message format for function code 01:

Command Body								
Station	Function	Start	Start	Requested	Requested			
Address	Code	Address	address	Number of Coil	Number of Coil			
		High Byte	Low Byte	High Byte	Low Byte			

Example: Read coil number 1 to 8 (address number 00017 to 00024) from RemoDAQ-8300 Modules
01 01 00 10 00 08

Response message format for function code 01:

Command Body							
Station	Function	Byte Count	Data	Data			
Address	Code						

Example: Coils number 2 and 7 are on, all others are off.

01 01 01 42

In the response the status of coils 1 to 8 is shown as the byte value 42 hex, equal to 0100 0010 binary.

Function Code 02

The function code 02 is used to read the discrete input's ON/OFF status of RemoDAQ-8300 in a binary data format.

Request message format for function code 02:

Command Body							
Station	Function	Start	Start	Requested	Requested		
Address	Code	Address	address	Number of Coil	Number of Coil		
		High Byte	Low Byte	High Byte	Low Byte		

Example: Read coil number 1 to 8 (address number 00001 to 00008) from RemoDAQ-8300 modules 01 01 00 01 00 08

Response message format for function code 01:

Command Body							
Station	Function	Byte Count	Data	Data			
Address	Code						

Example: input number 2 and 3 are on, all others are off.

01 01 01 60

In the response the status of input 1 to 8 is shown as the byte value 60 hex, equal to 0110 0000 binary.

Function Code 03/04

The function code 03 or 04 is used to read the binary contents of input Registers.

Request message format for function code 03 or 04:

Command Body							
Station	Function	Start	Start	Requested	Requested		
Address	Code	Address	address	Number of	Number of		
		High Byte	Low Byte	Register High Byte	Register Low Byte		

Example: Read register 40002 to 40003 hex in RemoDAQ-8300 module 01 04 00 01 00 02

Response message format for function code 03 or 04:

Command Body							
Station	Function	Byte Count	Data	Data			
Address	Code						

Example: Values where register 40002= 0043H and register 40003= 21H 01 04 04 00 43 00 21

Function Code 05

Force a single coil to either ON or OFF. The requested ON/OFF state is specified by a constant in the query data field. A value of FF 00 hex requests it to be ON. A value of 00 00 hex requests it to be OFF. And a value of FF FF hex requests it to release the force.

Request message format for function code 05:

Command Body							
Station	Function	Coil	Coil	Force Data High	Force Data		
Address	Code	Address	address	Byte	Low Byte		
		High Byte	Low Byte				

Example: Force coil 3 (address 00003) ON in RemoDAQ-8300 module 01 05 00 03 FF 00

Response message format for function code 05:

The normal response is an echo of the query, returned after the coil state has been forced.

	Command Body							
Station	Function	Coil	Coil	Force Data High	Force Data			
Address	Code	Address	address	Byte	Low Byte			
		High Byte	Low Byte					

Function Code 06

Presets integer value into a single register.

Request message format for function code 06:

Command Body							
Station	Function	Register	Register	Preset Data High	Preset Data		
Address	Code	Address	address	Byte	Low Byte		
		High Byte	Low Byte				

Example: Preset register 40002 to 00 04 hex in RemoDAQ-8300 module 01 06 00 02 00 04

Response message format for function code 06:

The normal response is an echo of the query, returned after the coil state has been preset.

Function Code 15 (0F hex)

Forces each coil in a sequence of coils to either ON or OFF.

Request message format for function code 15:

Command Body									
Station	Function	Start	Start	Requested	Requested	Byte	Force	Force	
Address	Code	Address	Address	Number of	Number of	Count	Data	Data	
		High	Low	Coil High	Coil Low		High	Low	
		Byte	Byte	Byte	Byte		Byte	Byte	

Example: Request to force a series of 10 coils starting at address 00017 (11 hex) in RemoDAQ-8300 module.

01 0F 00 11 00 0A 02 CD 01

The query data contents are two bytes: CD 01 hex, equal to 1100 1101 0000 0001 binary. The binary bits are mapped to the addresses in the following way.

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Address (000XX): 24 23 22 21 20 19 18 17 - - - - - 26 25

Response message format for function code 15:

The normal responses return the station address, function code, start address, and requested number of coil forced.

Command Body								
Station	Function	Start	Start	Requested	Requested			
Address	Code	Address	Address Low	Number of	Number of			
		High Byte	Byte	Coil High	Coil Low			
				Byte	Byte			

Example: 01 0F 00 11 00 0A

Function Code 16 (10 hex)

Preset values into a sequence of holding registers.

Request message format for function code 16:

Command Body							
Station	Function	Start	Start	Requested	Requested	Byte	Data
Address	Code	Address	Address	Number of	Number of	Count	
		High	Low Byte	Register	Register		
		Byte		High Byte	Low Byte		

Example: Preset address 40001 to 1234H and address 40002 to 5678H in RemoDAQ-8300 module.

01 10 00 00 00 02 04 12 34 56 78

Response message format for function code 08:

The normal responses return the station address, function code, start address, and requested number of registers preset.

Command Body						
Station	Function	Start	Start	Requested	Requested	
Address	Code	Address	Address Low	Number of	Number of	
		High Byte	Byte	Register	Register Low	
				High Byte	Byte	

Example: 01 10 00 00 00 02

2.3 RemoDAQ-8360 MODBUS RTU Address Mapping Table

Table 2-1

address 0X(Decimal)	Hex	Channel number	Content	attribute	Description
0001	00H	0	Current value	read	DI0
0002	01H	1	Current value	read	DI1
006	05H	5	Current value	read	DI5
0017	10H	0	Current value	read /write	DO0
0018	11H	1	Current value	read /write	DO1
0022	15H	5	Current value	read /write	DO5
0033	20H			read /write	Counter Start(1)/Stop(0)
0034	21H			write	Clear Counter (1)
0035	22H	0		read /write	Clear Overflow®
0036	23H			read /write	DI Latch Status④
0037	24H			read	Counter
0037	2411			/write	Start(1)/Stop(0)
0038	25H			write	Clear Counter (1)
0039	26H	1		read /write	Clear Overflow③
0040	27H			read /write	DI Latch Status④
0041	28H	2		read /write	Counter Start(1)/Stop(0)
0042	29H			write	Clear Counter (1)

0043	2AH			read /write	Clear Overflow3
0044	2BH			read /write	DI Latch Status ④
0045	2CH			read /write	Counter Start(1)/Stop(0)
0046	2DH	3		read /write	Clear Counter (1))
0047	2EH	3		read /write	Clear Overflow3
0048	2FH			read /write	DI Latch Status④
0049	30H			read /write	Counter Start(1)/Stop(0)
0050	31H	4		write	计 Clear Counter (1)
0051	32H	1 7		read /write	Clear Overflow®
0052	33H			read /write	DI Latch Status4
0053	34H			read /write	Counter Start(1)/Stop(0)
0054	35H			write	Clear Counter (1))
0055	36H	5		read /write	Clear Overflow3
0056	37H			read /write	DI Latch Status④
address 4X(Decimal)	Hex	Channel number	Content	Attribute	Description
40001 ~ 40002	0H ~ 1H	0	Current counter value	read	
40003 ~ 40004	2H ~ 3H	1	Current counter value	read	Counter value ①
40011 ~ 40012	0AH ~ 0BH	5	Current counter value	read	

	0CH ~			Read/		
40013 ~ 40014	0DH	0		write		
40015 ~ 40016	0EH ~	1 Pulse width		Read/	Pulse output width	
40015 ~ 40010	0FH			write	Pulse output width of low level ②	
					Of low level	
40023 ~ 40024	16H ~	5		Read/		
	17H			write		
	18H ~			Read/		
40025 ~ 40026	18H ~	0		write		
	1AH ~			Read/		
40027 ~ 40028	1BH	1	Pulse width	write	Pulse output width	
					of high level ②	
4000E 40000	22H ~		1	Read/		
40035 ~ 40036	23H	5		write		
40037 ~ 40038	24H ~	0		Read/		
10001 10000	25H	•		write		
40039 ~ 40040	26H ~	1	Pulse width	Read/ write	Pulse output	
	27H		counting		quantuty 5	
					-	
40047 ~ 40048	2EH ~	5		Read/ write		
	2111			WIILE		
	30H ~	_		Read/		
40049 ~ 40050	31H	0		write		
40054 40050	32H ~	4	Pulse width	Read/	Additional pulsa	
40051 ~ 40052	33H	1	counting	write	Additional pulse quantity ⑥	
					quantity 🖭	
40059 ~ 40060	3AH ~	5		Read/		
	3BH			write		
40044	D0			ma a -1	0011 0011	
40211	D2		name	read	83H,60H	
				Read/		
40213	D4		Version	write	A1H, 00H	
				WIIIC		
10055	4001		DI mode	Read/	0011 1000	
40257	100H	0	register	write	00H,VVH⑦	
40259	10111	1	DI mode	Read/	001 \0/11@	
40258	101H	1	register	write	00H,VVH⑦	

40262	105H	5	DI mode register	Read/ write	00H, VVH⑦
40273	110H	0	DO mode register	Read/ write	00H, SSH®
40274	111H	1	DO mode register	Read/ write	00H, SSH®
40278	115H	5	DO mode register	Read/ write	00H, SSH®
40301	12CH	ALL	DI value	read	
40303	12EH	ALL	DO value	Read/ write	

Note:

- ① How to retrieve the counter/frequency value:

 Counter (decimal) = (value of 40002) * 65536 + (value of 40001)

 Frequency (decimal) = value of 40001
- 2 Time Unit: 0.1ms.
- ③ If the count number is overflow, this bit will be 1. Once this bit is read, the value will return to 0.
- When DI channel is configured as "High to low latch" or "Low to high latch", this bit will be 1 if the latch condition occurs. After that, value of this bit will keep 1 until user writes 0 to this bit (clear the latch status).
- ⑤ Decide how many pulses will be generated. When user writes 0 to this bit, it will continuously generate pulse.
- © During the pulse generation, user can use this bit to generate more pulses. For example, "Absolute pulse" is set as 100. During its generation, user can set "Incremental pulse" as 10. After the 100 pulses are generated, the extra 10 pulses will continue to be generated.

(7)DI mode:

VV	00	01	02	03	04
DI mode	DI	Count	low to high	High to	Frequency
			Latch	Low Latch	

®DO mode:

SS		00	01
DI	working	Ordinary DO	Pulse output
mod	е		

Chapter 3 Software Instructions

1, click RemoDAQ-8300 Series Ethernet IO Module Utility.exe install the tools.

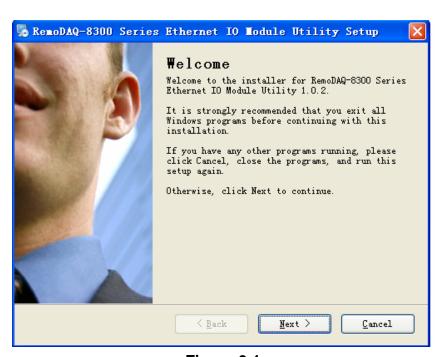


Figure 3.1

2, Click Next, under the silent installation.

Figure 3.2

- 3, Click Finish. The installation is complete.
- 4, There will be one shortcut icon on the desktop.

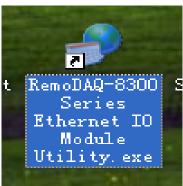


Figure 3.3

5, Double click the shortcut icon into the interface that you should be able to see the operation window as Figure 3.4.

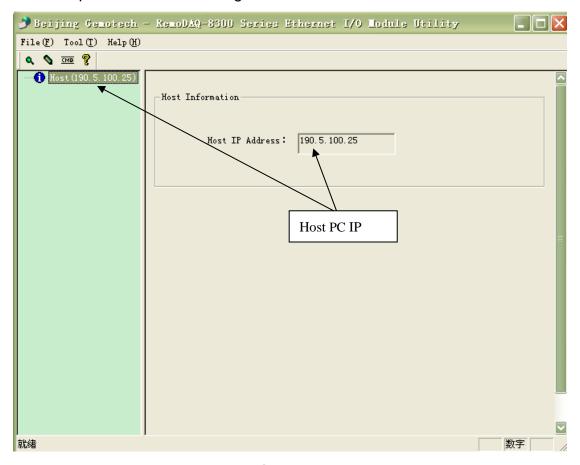


Figure 3.4

6, Click the magnifying glass icon, RemoDAQ-8300 Series Ethernet IO Module Utility will then search all RemoDAQ-8300 modules on the Ethernet network. If your RemoDAQ-8300 modules are used for the first time, its IP will be 192.168.0.1 by default.

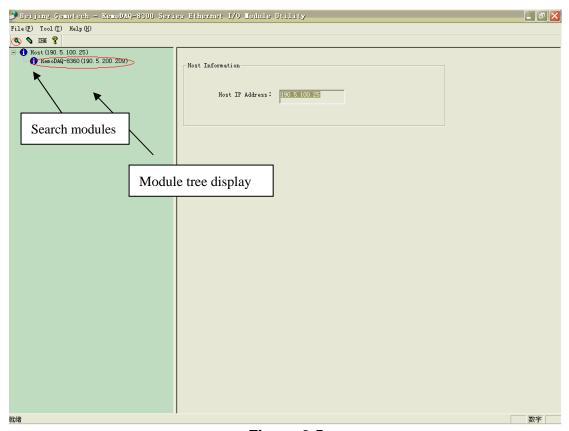
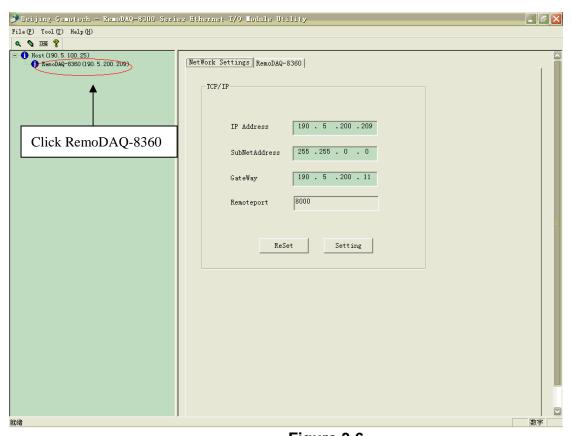
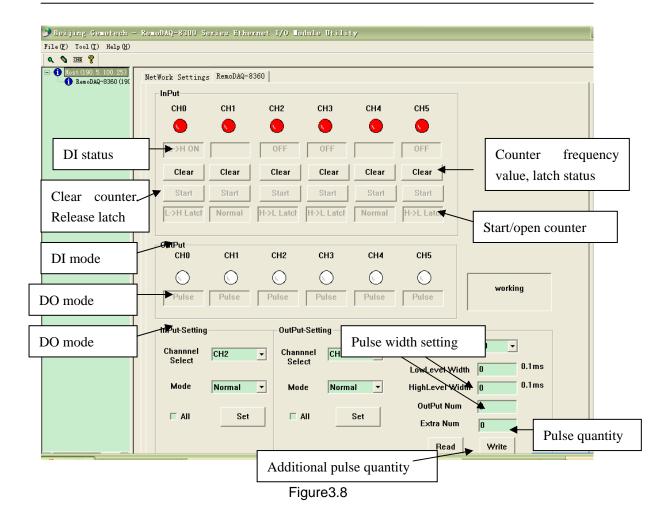


Figure 3.5

7、click RemoDAQ-8360 to the application interface.




Figure 3.6

🌛 Beijing Gemotech - RemoDAQ-8300 Series Ethernet I/O Module Utility _ F X File(F) Tool(T) Help(H) Q 💊 🔤 🤻 Host (190, 5, 100, 25) RemoDAQ-8360 (190, 5, 200, 209) | NetWork Settings | RemoDAQ-8360 TCP/IP 190 . 5 .200 .209 IP Address 255 . 255 . 0 . 0 Setting network information 190 . 5 .200 . 11 8000 Setting ReSet

8, Click NetWork Setting.

Figure 3.7

- 9, You need to change IP of the RemoDAQ-8300 modules the same subnet with the host PC. Type the correct IP address, Subnet address, and Gateway on the Status Display area. After complete setting, click the Setting button. When you finish the Network Settings, please click the ReStart Button to restart the module. After that, you must search for the module again. The port of RemoDAQ-8300 modules are 8000.
- 10, Click tab RemoDAQ-8360 into the functional interface of the module.

Instructions

1. Channel Setting

You can see value of all digital input channels by related LED display in this tab. Besides, you also can control values of all digital output channels by related button. The LED next to the button will display current value of that digital output channel.

2. DI setting

You can see digital input value and configure setting for each digital input channel. It is the same that you can control the digital output value and configure setting for each digital output channel.

You can choose different mode for that digital input channel by choosing the **InPut-Setting** area at the bottom left corner of this tab. After you have chosen the channel and the mode, click the **Set** mode button. When you click the **ALL** check box, all channels will be set in the same mode.

When you choose **Counter** mode, one counter will count the pulse number of the digital signal from the selected channel, and then record the count number in the register. At the bottom of the **InPut** area, current count value of the selected channel is displayed by the **DI Value**

When you choose Low to High Latch mode, once the digital input

channel detects logic level changes from low to high, the **DI Latch Status** will be set a bit. The **DI Latch Status** will remain the logic high, until you clear latch manually. Then the **DI Latch Status** will be back to logic low. The latch status can be seen by the **DI Value** text box at the bottom of the **InPut** area. You can clear latch by clicking the **Clear** button.

When you choose **High to Low Latch** mode, once the digital input channel detects logic level changes from high to low, the **DI Latch Status** will be set a bit. The **DI Latch Status** will remain the logic high, until you clear latch manually. Then the **DI Latch Status** will be back to logic low. The latch status can be seen by the **DI Value** text box at the bottom of the **InPut** area. You can clear latch by clicking the **Clear** button.

When you choose **Frequency** mode, RemoDAQ-8300 digital module will calculate the frequency value of the digital input signal from the selected channel. The frequency value will be displayed by the **DI Value** text box at the bottom of the **InPut** area.

3. DO setting

You can choose different mode for that digital output channel by choosing the DO mode combo box in the **OutPut-Setting** area. After you have chosen the mode, click the **Set** mode button. When you click the **ALL** check box, all channels will be set in the same mode.

When you choose DO mode, you can control the digital output value of the selected channel by the **DO** button. The current digital output value will be shown by the DO status LED display.

The pulse output is the same as PWR. After you choose the **Pulse output** mode, the selected digital output channel can generate continuous pulse train or finite pulses. You can define the pulse width by entering into the Low signal width and High signal width text box in the **OutPut-Setting** area. After you complete the setting, click the **SET** button. Then you can choose to generate continuous pulse train or finite pulses. After select the pulse output mode, click the **LED** button to generate or stop the pulse output.